https://ftkunsurya.com/jurnal/index.php/jtk/issue/feed Jurnal Teknologi Kedirgantaraan 2024-04-03T04:01:13+00:00 Aprilia Sakti K aprilia.sakti.05@gmail.com Open Journal Systems <div id="content" class=""> <div id="journalDescription"> <p style="font-weight: 400;">Jurnal Teknologi Kedirgantaraan (JTK), the Journal of Aerospace Technology, contains research articles and analytical studies in the field of aerospace engineering that have never been published in other media. The scope of the journal is covering aircraft propulsion, avionics, structures, materials, aircraft maintenance and operations, and related application topics of science. The aim of the journal is to publish the state of the art of aerospace research, and to motivate the productivity of scientific work in the field of aerospace technology, industry, and applied science.</p> <p style="font-weight: 400;">Journal of Aerospace Technology (JTK) is published periodically at least two issues in one volume (one year). We, as editorial board and teams, continuously make improvements therefore the Journal of Aerospace Technology can be recognized nationally and internationally.</p> <p style="font-weight: 400;">Scopes:</p> <ol> <li>aerospace technology, covering aircraft structure, power plant, material, fuel, aircraft operations and maintenance, UAV technology, and space science.</li> <li>related fields that support the development of aerospace technology, such as mathematics, physics, chemistry, information technology, environmental science, aerospace, aeronautics law, aviation operational management, aircraft maintenance management, aviation psychology, and aerodrome</li> </ol> <p> </p> </div> </div> https://ftkunsurya.com/jurnal/index.php/jtk/article/view/92 Battery Maintenance Analysis Using Reliability Mapping Method on Aircraft A330-900 2024-03-14T03:57:29+00:00 Muhammad Kevin Bilhaq bilhaqkevin@gmail.com Mufti Arifin muftiArifin@unsurya.ac.id <p>Airplanes is transportation that need a high level of safety and comfort. Therefore, the aircraft's parts must be in excellent shape and able to fly. This study aims to assess the reliability of battery maintenance on A330-900 aircraft using the reliability mapping method, as well as to assess the efficiency of doing so in order to compare the reliability mapping method's implementation to maintenance schedules for the batteries on these aircraft. The stages of this study started with gathering maintenance information for the A330-900, then went on to classify the different types of maintenance and create reliability mapping tables. Additionally, a comparison between the implementation and maintenance schedule for the A330-900 aircraft battery was made in order to analyze the reliability of battery maintenance on the A330-900 aircraft and to determine the effectiveness of using the reliability mapping method. After that, carry out reliability mapping optimization computations till conclusions about the research's findings are reached. Reliability mapping makes it evident where and when unforeseen maintenance takes place. The fact that just 3 unscheduled maintenance visits totaling 5.5% of the total maintenance were made out of the 54 replacements shows how dependable the battery maintenance on the A330-900 is. The execution of battery maintenance is reportedly wrong, with numbers based on estimations made according to calendar time being 77% early, 19% late, and 4% accurate</p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 Muhammad Kevin Bilhaq, Mufti Arifin https://ftkunsurya.com/jurnal/index.php/jtk/article/view/104 Analisis Impact Landing Skid Drone Agrikultur Dengan Variasi Ground Contur 2024-03-27T04:18:23+00:00 muhammad fadli muhammadfadli0641@gmail.com Muhammad Hadi Widanto MuhammadHadiWidanto@unsurya.ac.id Syarifah Fairuza SyarifahFairuza@unsurya.ac.id <p>UAV (<em>Unmanned Aerial Vehicle) </em>memiliki bentuk, ukuran, dan model yang bervariasi. Salah satu komponen penting dalam struktur UAV adalah <em>landing skid</em>. <em>Landing </em><em>skid</em> berfungsi menahan beban pesawat pada saat di darat serta menyerap energi akibat hentakan yang terjadi ketika proses pendaratan. <em>Landing skid </em>harus menanggung beban tekan (<em>compressive load</em>),. Penelitian ini bertujuan mengetahui pengaruh pemilihan material dan ketebalan terhadap kekuatan <em>landing skid</em>. Pada penelitian ini terdapat 4 komponen dalam mensimulasikan <em>impact skid landing </em>yaitu: <em>plat body, skid landing, </em><em>mounting, ground contur</em>. Hasil simulasi dari respon dinamik gaya terhadap waktu dari simulasi <em>skid landing </em>terhadap <em>ground contur </em>dengan variasi ketebalan 2 mm, 4 mm, dan 6 mm terhadap tanah yang bergelombang dan tanah datar. Dari hasil simulasi menunjukkan semakin tebal material maka nilai gaya maksimum juga semakin tinggi. Dari hasil simulasi menunjukkan material <em>Carbon Fiber Reinforced Polymer </em>(CFRP) menghasilkan defleksi yang lebih kecil dibandingkan dengan material alumunium dimana pada kecepatan jatuh.</p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 muhammad fadli, Muhammad Hadi Widanto, Syarifah Fairuza https://ftkunsurya.com/jurnal/index.php/jtk/article/view/100 Analisis Pembebanan Statis Pada Struktur Hexacopter Drone Untuk Pertanian (DRUPER) 2024-03-01T01:56:54+00:00 Noval Erlangga nvlairlangga@gmail.com Simon Sindhu SimonSindhu@unsurya.ac.id Endah Yuniarti Eyuniarti@unsurya.ac.id <p>Menurut data dari Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal – Kementerian Pertanian 2020, area lahan pertanian di Indonesia seluas 36.817.086 Hektar. Dengan luas lahan pertanian yang begitu potensial, petani bisa menggunakan teknologi <em>drone </em>untuk membantu tugas untuk meningkatkan produktifitas. Tujuan dari peneltian ini untuk mengetahui nilai kekuatan yang diterima drone dalam menahan beban pada kondisi terbang <em>hover</em>. Desain drone terdiri dari tiga bagian utama yaitu <em>Body frame </em>menggunakan material plastik polikarbonat, <em>Support structure</em>, dan <em>Skid </em>yang menggunakan material aluminium dengan konfigurasi <em>hexacopter</em>. Sketsa dan model drone didesain dan dirancang menggunakan perangkat lunak CAD (<em>Computer Aided </em><em>Design</em>) Solidworks dan simulasi pembebanan struktur dilakukan menggunakan perangkat lunak CAE (<em>Computer Aided Engineering</em>) ANSYS Workbench. Perhitungan simulasi analisis kekuatan struktur <em>drone </em>dengan metode elemen hingga diperoleh nilai Regangan <em>Von Mises </em>sebesar 0,00089 dan Tegangan <em>Von Mises </em>maksimum sebesar 21,96 MPa yang terjadi pada bagian komponen <em>Support Structure</em>. Dimana nilai tegangan ini masih dibawah nilai kekuatan luluh (<em>Yield Strength</em>) materialnya yang berupa aluminium 6061-T6 yaitu sebesar 259,2 MPa, sehingga secara umum drone untuk pertanian ini dinyatakan aman.</p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 Noval Erlangga, Simon Sindhu, Endah Yuniarti https://ftkunsurya.com/jurnal/index.php/jtk/article/view/95 Simulasi Perhitungan Fuel Consumtion Pada Pesawat A320 Saat Holding Di Bandara Internatioanal Halim Perdanakusuma Menggunakan Teori Antrian 2024-03-01T02:13:42+00:00 Dhimas Ilyas Ramadhani Dhimas dhimasilyasr@gmail.com Mufti Arifin MuftiArifin@unsurya.ac.id Ade Julizar AdeJulizar@unsurya.ac.id <p>In aircraft operations, to determine the amount of fuel consumption on the aircraft, it is necessary <br>to know the time used for holding. Holding time is influenced by the number of aircraft using runway facilities <br>and can be calculated using queuing theory. This study aims to determine the calculation of fuel <br>consumption on aircraft when holding at Halim Perdanakusuma International Airport using queuing theory. <br>Data for queue calculation is based on observations on flightradar24. Fuel consumption is estimated using <br>aircraft maximum landing weight data, turning flight performance theory and aircraft manuals. From the <br>results of the calculation, it was found that it took 6 minutes for the aircraft to queue during holding, from <br>this time the fuel consumption calculation was carried out on the holding pattern and obtained the most fuel <br>consumption results on the KOMIT holding pattern, which was 241,8 kg based on queuing theory and 554,8 <br>kg based on actual data calculations. The difference in fuel consumption results is far due to the difference <br>in time used. The time obtained based on queuing theory is 6 minutes and is equal for each holding pattern, <br>while the time obtained based on actual data varies from one aircraft to another. For turning flight <br>performance capabilities, the A320 aircraft can maneuver 180º within 1 minute with the largest radius of <br>9.204 m in 61 seconds or 1 minute 1 second on the IMU holding pattern and a radius of 2.327 m in 60,6 <br>seconds or 1 minute 6 seconds on the COMMIT holding pattern.</p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 Dhimas Ilyas Ramadhani Dhimas, Mufti Arifin, Ade Julizar https://ftkunsurya.com/jurnal/index.php/jtk/article/view/106 Analisis Keandalan Main Battery Peshawar CRJ-1000 Di Maskapai Garuda Indonesia 2024-04-03T04:01:13+00:00 Haidar Hardiansyah haidarhardiansyah@gmail.com Freddy Franciscus FreddyFranciscus@unsurya.ac.id Endah Yuniarti Eyuniarti@unsurya.ac.id <p><em>The main battery on the CRJ-1000 aircraft is an important component in the </em><em>aircraft's electrical system. The main battery functions as the main source of electric power </em><em>when the aircraft is turned off or when the aircraft engine is not operating. If there is a failure </em><em>in the aircraft's battery it can cause disruption to other systems so that the aircraft cannot fly </em><em>or Aircraft on Ground (AOG). In Garuda Indonesia's CRJ-1000 aircraft battery, there were </em><em>several findings where the battery failed before reaching the scheduled removal time. This </em><em>study aims to analyze the reliability of the CRJ-1000 main battery on the Garuda Indonesia </em><em>airline. The analytical method is carried out by collecting historical data on main battery </em><em>failures and calculating the Mean Time Between Failure (MTBF) and Availability values for a </em><em>certain period. In addition, an analysis was also carried out on maintenance procedures and </em><em>replacement of the main battery carried out by Garuda Indonesia airline technicians. The </em><em>results of the analysis show that the MTBF of the CRJ-1000 main battery on Garuda </em><em>Indonesia airlines has a fairly good value, but there is a need for improvement in maintenance </em><em>procedures and replacement of the main battery to increase availability. The </em><em>recommendations proposed are evaluating the main battery maintenance and replacement </em><em>procedures, as well as increasing the availability of main battery spare parts which can speed </em><em>up repair times in failure situations.</em></p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 Haidar Hardiansyah, Freddy Franciscus , Endah Yuniarti https://ftkunsurya.com/jurnal/index.php/jtk/article/view/103 Analisis Kerusakan Pelat Komposit Akibat Beban Low Velocity Impact Terhadap Variasi Energi Impak Dengan Menggunakan Elemet Split 2024-03-27T04:17:30+00:00 Muhammad Hadi Widanto mhadi@unsurya.ac.id Amat Chaeroni amat@unsurya.ac.id Eggy Surya eggysurya77@gmail.com <p>Komposit merupakan material yang paling banyak digunakan pada struktur pesawat terbang. Hal ini karena material komposit memiliki kekuatan struktur yang tinggi dan berat yang ringan. Namun komposit mempunyai kelemahan yaitu tidak tahan terhadap beban impak karena sifatnya yang getas. Beban impak dapat terjadi akibat <em>human</em> <em>error</em> pada saat dilakukan perawatan akibat benda jatuh atau karena tumbukan benda asing lainnya. Pada penelitian ini dilakukan simulasi impak struktur komposit untuk mengetahui ketahan komposit dengan variasi energi impak. Pada simulasi impak menggunakan metode elemen hingga dengan memodelkan intralaminar dan interlaminar menggunakan metode kegagalan hashin dan <em>cohesive zone model</em>. Penelitian terhadap pengaruh <em>element split </em>yang dimodelkan pada pelat komposit menjadi penelitian utama. Dari hasil menunjukkan pengaruh <em>element split</em> terhadap respon dinamik dan kerusakan delaminasi dapat memberikan hasil dengan korelasi yang lebih baik terhadap hasil eksperimen.</p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 MUHAMMAD HADI WIDANTO, Amat Chaeroni, Eggy Surya https://ftkunsurya.com/jurnal/index.php/jtk/article/view/97 Analisis Tingkat Kebisingan Pesawat Saat Take-Off Berdasarkan Variasi Tinggi Lintasan di Bandara Halim Perdanakusuma 2024-03-01T02:01:12+00:00 Arindho Andrifa Faturrohman Arindhoaf@gmail.com Mufti Arifin mufti@unsurya.ac.id Ericko Chandra Utama Ericko@unsurya.ac.id <p><em>An increase in flight frequency can have a negative impact on the surrounding environment, one of which is high noise levels. Noise can come from full activity, runway stay, movement towards the runway, or aircraft engine testing. Airplane noise during take-off is one of the environmental problems that need attention at airports. The height of the aircraft's trajectory during take-off can affect the noise level generated by the aircraft, but not much research has been conducted to measure the impact of variations in the height of the disturbance on the noise level of aircraft at Halim Perdanakusuma Airport. This study aims to measure the noise level of aircraft during take-off with variations in track height at Halim Perdanakusuma Airport. The method used in this study is to observe 4 aircraft taking off at Halim Perdanakusuma Airport with a research time of 3 days, and the measuring instrument used is a sound level meter. Sound level meters measure noise in dBA units between 30 and 130 dB at a frequency of 20 to 20.000 Hz. Based on the calculation and measurement results obtained, it is known that the maximum height when the measurement is on the second day is at point A of 277 meters, while at point B is 299 meters. While the highestnoise measurement at point A is 93,1 dB while at point B it is 91,5 dB. The measured noise value based on calculations is estimated at 66,2 dB and is still below the Airbus A320 aircraft noise certification for flyover takeoff of 73,7 dB.</em></p> 2024-01-31T00:00:00+00:00 Copyright (c) 2024 Arindho Andrifa Faturrohman, Mufti Arifin, Ericko Chandra Utama